In vitro cytocompatibility of one-dimensional and two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites.

نویسندگان

  • Behzad Farshid
  • Gaurav Lalwani
  • Balaji Sitharaman
چکیده

This study investigates the in vitro cytocompatibility of one-dimensional and two-dimensional (1D and 2D) carbon and inorganic nanomaterial reinforced polymeric nanocomposites fabricated using biodegradable polymer poly (propylene fumarate), crosslinking agent N-vinyl pyrrolidone (NVP) and following nanomaterials: single and multiwalled carbon nanotubes, single and multiwalled graphene oxide nanoribbons, graphene oxide nanoplatelets, molybdenum disulfide nanoplatelets, or tungsten disulfide nanotubes dispersed between 0.02 and 0.2 wt% concentrations in the polymer. The extraction media of unreacted components, crosslinked nanocomposites and their degradation products were examined for effects on viability and attachment using two cell lines: NIH3T3 fibroblasts and MC3T3 preosteoblasts. The extraction media of unreacted PPF/NVP elicited acute dose-dependent cytotoxicity attributed to leaching of unreacted components into cell culture media. However, extraction media of crosslinked nanocomposites showed no dose dependent adverse effects. Further, all crosslinked nanocomposites showed high viability (78-100%), high cellular attachment (40-55%), and spreading that was confirmed by confocal and scanning electron microscopy. Degradation products of nanocomposites showed a mild dose-dependent cytotoxicity possibly due to acidic degradation components of PPF. In general, compared to PPF control, none of the nanocomposites showed significant differences in cellular response to unreacted components, crosslinked nanocomposites and their degradation products. Initial minor cytotoxic response and lower cell attachment numbers were observed only for a few nanocomposite groups; these effects were absent at later time points for all PPF nanocomposites. The favorable cytocompatibility results for all the nanocomposites opens avenues for in vivo safety and efficacy studies for bone tissue engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional nanostructure-reinforced biodegradable polymeric nanocomposites for bone tissue engineering.

This study investigates the efficacy of two-dimensional (2D) carbon and inorganic nanostructures as reinforcing agents for cross-linked composites of the biodegradable and biocompatible polymer polypropylene fumarate (PPF) as a function of nanostructure concentration. PPF composites were reinforced using various 2D nanostructures: single- and multiwalled graphene oxide nanoribbons (SWGONRs, MWG...

متن کامل

Computational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites

Computational methods can play a significant role in characterization of the carbon-based nanocomposites by providing simulation results. In this paper, we prepared a brief review of the mechanical properties of carbon nanotubes (CNTs), Graphene, and coiled carbon nanotube (CCNTs) reinforced nanocomposites. Varies simulation studies in mechanical properties of nanocomposites including represent...

متن کامل

Thermo-mechanical properties of polymer nanocomposites reinforced with randomly distributed silica nanoparticles- Micromechanical analysis

A three-dimensional micromechanics-based analytical model is developed to study thermo-mechanical properties of polymer composites reinforced with randomly distributed silica nanoparticles. Two important factors in nanocomposites modeling using micromechanical models are nanoparticle arrangement in matrix and interphase effects. In order to study these cases, representative volume element (RVE)...

متن کامل

In vitro cytotoxicity of single-walled carbon nanotube/biodegradable polymer nanocomposites.

Injectable nanocomposites made of biodegradable poly(propylene fumarate) and the crosslinking agent propylene fumarate-diacrylate as well as each of three forms of single-walled carbon nanotubes (SWNTs) were evaluated for their in vitro cytotoxicity. Unreacted components, crosslinked networks, and degradation products of the nanocomposites were investigated for their effects on cell viability u...

متن کامل

P-90: The Effect of Nitric Oxide on Mouse Oocyte in Vitro Maturation in Two and Three Dimensional Conditions

Background: In vitro culture of ovarian follicles may preserve fertility in women with premature ovarian failure due to cancer .It seems that creation a condition that could maintain cellular communications and supports growth of follicles to produce mature oocytes appear to be essential. Nitric oxide (NO) has been recently shown to act with a dual action in mouse oocyte meiotic maturation depe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 103 7  شماره 

صفحات  -

تاریخ انتشار 2015